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LETTER TO THE EDITOR 

Fluctuation-induced kinetics of reversible coagulation 

G S Oshanin and S F Burlatsky 
Institute of Chemical Physics, Academy of Sciences of USSR, 117334 Kosygin Street 4, 
MOSCOW V-334. USSR 

Received 16 March 1989, in final form 13 July 1989 

Abstract. The influence of spatial fluctuations in the density of monomeric units on the 
long-time kinetics of reversible coagulation is investigated. It  is shown that the long-time 
approach to the equilibrium cluster size distribution is determined by relaxation of the 
spatial fluctuation spectrum and described by a power-law dependence. 

For a wide variety of kinetic behaviour in diverse physical, chemical and biological 
systems, including applied problems such as colloidal and aerosol physics (Friedlander 
1977), studies of antigen-antibody aggregation (Johnston and Benedek 1984), the 
kinetics of reversible polymerisation (van Dongen and Ernst 1984) and gelation 
phenomena (Leyvraz and Tschudi 1981, 1982), there arises the problem of describing 
coagulation/fragmentation processes. 

As usual, this problem was investigated in the limit of infinite velocity of monomer 
or cluster transport. In particular, such investigations were carried out by van Dongen 
and Ernst (1984). They extended the kinetic mean-field theory of polymerisation by 
including fragmentation of clusters in such a way that the results of Flory (1936) or 
Stockmayer (1943) appear as a limiting case for large times. 

However, the consideration of finite diffusive transport of reagents is essential for 
the investigation of the kinetics of bimolecular processes. On the one hand, the 
consideration of diffusive motion leads to the renormalisation of direct and backward 
rate constants as was shown by Smoluchowsky. On the other hand, the existence of 
spatial fluctuations in reagent distributions results in a crucial difference between the 
mean-field approximations and long-time fluctuation-induced kinetics. For instance, 
the long-time kinetics of the bimolecular irreversible reaction A + B -+ Inert in the case 
of equal initial mean densities of A and B is governed by diffusive smoothing of initial 
density fluctuations which leads to the dependence C (  t )  - t c d l 4  (Ovchinnikov and 
Zeldovich 1978, Burlatsky 1978, Toussaint and Wilczek 1983), where d is the space 
dimensionality. An essential deviation from the exponential mean-field law for the 
long-time approach to equilibrium was observed by Zeldovich and Ovchinnikov 1977, 
1978, Kang and Redner 1985; Burlatsky et al 1989, for reversible bimolecular diffusion- 
controlled reactions. For instance, for the reversible reaction A + A - B, which is a 
special case of the coagulation/fragmentation process, the existence of initial Gaussian 
fluctuations of the densities of the reagents leads to the power-law approach to 
equilibrium, C (  t )  - C(o0) - ( D t ) - d / 2 ,  where D is the diffusion coefficient. 

For irreversible coagulation, the influence of spatial fluctuations was investigated 
by Kang and Redner (1984) and Kang et al (1986). For special cases of direct rate 
constant they deduced that for spatial dimension d less than d,= 2 the fluctuation 
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effects can be relatively important and give rise to dimension-dependent kinetic 
exponents and a novel non-monotonic cluster size distribution. For d > d, the solution 
of the Smoluchowsky mean-field equation is still valid. 

In this letter we investigate the influence of initial spatial fluctuations on the 
long-time approach to the equilibrium cluster size distribution in coagulation/frag- 
mentation processes. 

A coagulation/fragmentation process can generally be written in terms of the 
following infinite set of reversible reactions: 

Am +AsHAm+,* (1) 
Here Am denotes a cluster (m-mer) containing m monomeric units A , ,  Neglecting 
terms connected with noise of diffusive fluxes (Gardiner 1983) the time evolution of 
(1) is give by an infinite set of coupled non-linear rate equations 

1 
c k = -  C (KgCtCj-6jct+,)-  C (KklCkC,-FkjCk+j)+DArCk 

Ck = Ck(C t )  
( 2 )  2 r+J=k  J = l  

where Ar  is the d-dimensional Laplacian. The direct rate constant K ,  describes the 
bimolecular coagulation process. The unimolecular fragmentation process is described 
by the backward rate constant F;,. Other reactions, such as triple collisions and break-up 
into many particles are assumed to be absent. We consider only one kind of rate 
constants: 

K ,  = 2Pr ( f  - 2) i + 2 ) j  + 21 
f is a parameter of Flory’s polymer model RAf, where RA, units carry f A groups 
forming A - A  bonds; and a constant fragmentation kernel F;, = Q. Besides, we assume 
Q to be large enough that a sol-gel transition would not exist. 

Let us denote the moments of Ck(r,  t )  distribution 

Fn(r ,  t )  = k”Ck(r, t )  
k = l  

where, for instance, po is a prescribed number of clusters and pl  is a prescribed number 
of monomeric units. By summing ( 2 )  over all k we obtain: 

( 3 a )  @o(r,  t ) =  -POPo(r ,  t )+( f -2)1”1(r ,  t ) I2+Q(P lk  t ) -Po( I ;  t))+DAr+o(r, t )  
for the zeroth moment and for moments of nth order 

where p n  = p,,( r, t )  and C, are the binomial coefficients, and Bj are Bernoulli numbers. 
For F~ it follows that 

@ I =  DArpl. (4) 
This equation was recently obtained with field theoretical techniques by Elderfield 
(1987). The moments can be represented in the following form: 

Pn(6 t )=Pu,( t )+P:( r ,  t )  (P: ( r ,  t ) >  = 0 
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where p,,(t) is the mean value, p:(r,  t )  is a local deviation from p,,(t) and angle 
brackets represent volume average. Averaging (3a)  we obtain the equation which 
governs time evolution of the zeroth mean moment 

g o ( t )  = -P[2Po(f)  + ( f - 2 ) M I 2  -4p[GOo(O, t )  

+(f-2)Go,(O, t ) + ( f - 2 ) 2 G l l ( 0 ,  t ) l +  Q(M-po( t ) )  ( 5 )  

G,,(R, t )  = (p?(r ,  t)pu:(r+R, t ) >  

where M is the mean density of monomeric units, G,, are the pair correlation functions 

and R is the d-dimensional correlation parameter. Using (3)-(5) and neglecting terms 
with p?p;’ we obtain the following system of linear rate equations for G,, : 

Gll = 2 D A R G I I  

G I  = ~ D A R G O I  - 4 p ( f - 2 ) ( ~ G o 1 + p o ( t ) G 1 1 ) + ~ ( ~ 1 1  - ~ 1 0 )  

G O O  = 2DARGOO - 8 p  ( f - 2 )  ( MGOO + PO( t ) GO 1 ) + 2 0 ( GO I - G O O ) .  

For the monodisperse initial distribution 

G ( r ,  0) = & d - h ( r ,  0) 

where is a Kroneker delta and p l  we assume to be a random function with Gaussian 
&correlated distribution and mean value ( p , ( r ,  0)) = M, we obtain the following long- 
time dependences for G,(R  = 0, t )  

Gll(O, t )  = M(2Dt)-d’2 GOl(0, t ) =  - f M [ f - 2 - f / ( 1  +8fpM/Q)](2Dt) -d’2  

GOo(0, t )  = a M [ f - 2  - f / ( l +  8fpM/Q)](2Dt)-d’2.  

At the large-t limit we can represent the mean zeroth moment in the following form: 

Po(f )  = FUo(c0) + @ o ( t )  & o ( t ) / P o ( a )  << 1 

where po(a)  is an equilibrium value and 6po( t )  is a small deviation from the equilibrium 
state. Linearising (5) near the equilibrium we get the leading terms of Spo(t) at large 
1 :  

8po( t )  = - [ p Q ” * / (  Q+ 8fpM)’”]M(2Dt)-”l’ 

and, hence, the long-time approach to the equilibrium cluster size distribution is 
described by the power-law dependence 

ck(t) = ~ ~ ( 0 0 )  -constant x ( 2 ~ t ) - ” l ’ .  

To summarise, we have shown that the long-time kinetics of reversible coagulation 
is determined by fluctuation effects and described by a power-law dependence on time 
as compared to the exponential laws predicted by mean-field approximations. Thus, 
we affirm that the upper critical dimension of the considered system is equal to infinity, 
d,  = 00. 

The long-time peculiarities of coagulation/fragmentation processes are determined 
by the existence of a pure diffusive mode associated with the conserved density M 
(the fact that p1 is a pure diffusive mode was recently pointed out by Elderfield (1987)). 
This conservation law is, however, only valid as long as no gelation occurs. We expect 
that the power law for the long-time approach to equilibrium would be valid even if 
the system exceeds the sol-gel point, because we would then have a new diffusive 
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mode-a prescribed value of monomeric units contained both in the sol and the gel 
phases. This is, however, an open problem of detailed investigation. 

The authors are deeply thankful to Professor A A Ovchinnikov and Dr I Ya Levintovich 
for their helpful discussions, and interest in this letter. 
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